
/* Defines for Soundblaster and Soundblaster Pro IO address */
#define LEFT_FM_STATUS 0x00 /* Pro only */
#define LEFT_FM_ADDRESS 0x00 /* Pro only */
#define LEFT_FM_DATA 0x01 /* Pro only */
#define RIGHT_FM_STATUS 0x02 /* Pro only */
#define RIGHT_FM_ADDRESS 0x02 /* Pro only */
#define RIGHT_FM_DATA 0x03 /* Pro only */
#define MIXER_ADDRESS 0x04 /* Pro only */
#define MIXER_DATA 0x05 /* Pro only */
#define DSP_RESET 0x06
#define FM_STATUS 0x08
#define FM_ADDRESS 0x08
#define FM_DATA 0x09
#define DSP_READ_DATA 0x0A
#define DSP_WRITE_DATA 0x0C
#define DSP_WRITE_STATUS 0x0C
#define DSP_DATA_AVAIL 0x0E
#define CD_ROM_DATA 0x10 /* Pro only */
#define CD_ROM_STATUS 0x11 /* Pro only */
#define CD_ROM_RESET 0x12 /* Pro only */
#define CD_ROM_ENABLE 0x13 /* Pro only */

#define ADLIB_FM_STATUS 0x388
#define ADLIB_FM_ADDRESS 0x388
#define ADLIB_FM_DATA 0x389

/* Types of Soundblaster Cards */
#define SB15 1
#define SBPro 2
#define SB20 3

/* DSP Commands */
#define DIRECT_8_BIT_DAC 0x10
#define DMA_8_BIT_DAC 0x14
#define DMA_2_BIT_DAC 0x16
#define DMA_2_BIT_REF_DAC 0x17
#define DIRECT_ADC 0x20
#define DMA_ADC 0x24
#define MIDI_READ_POLL 0x30
#define MIDI_READ_IRQ 0x31
#define MIDI_WRITE_POLL 0x38
#define TIME_CONSTANT 0x40
#define DMA_4_BIT_DAC 0x74
#define DMA_4_BIT_REF_DAC 0x75
#define DMA_26_BIT_DAC 0x76
#define DMA_26_BIT_REF_DAC 0x77
#define HALT_DMA 0xD0
#define CONTINUE_DMA 0xD4
#define SPEAKER_ON 0xD1
#define SPEAKER_OFF 0xD3
#define DSP_ID 0xE0
#define DSP_VER 0xE1
#define MDAC1 0x61
#define MDAC2 0x62
#define MDAC3 0x63
#define MDAC4 0x64
#define MDAC5 0x65
#define MDAC6 0x66
#define MDAC7 0x67

/* High-speed parameters */
#define MAX_LO_REC 12048
#define MAX_LO_PLAY 22222
#define SET_HS_SIZE 0x48
#define HS_DAC 0x91
#define HS_ADC 0x99

Programming the Sound Blaster ADC/DAC:

2x6h DSP Reset Port Write Only
2xAh DSP Read Data Port Read Only
2xCh DSP Write Data or Command Write
2xCh DSP Write Buffer Status (bit 7) Read
2xEh DSP Data Available Status Bit 7) Read Only

x = 1,2,3,4,5,6 for the Sound Blaster <= 1.5
x = 1,2,3,4,5,6 for the Sound Blaster Micro Channel Version
x = 2,4 for the Sound Blaster 2.0
x = 2,4 for the Sound Blaster Pro

The DSP: ---

Due to the different mode and the hardware performance of different audio
cards, the maximum sampling rate is different.

Input (ADC):
Sound Blaster (<=1.5) Mono/Normal mode: 8-bit only 4KHz to 13KHz
Sound Blaster (2.0) Mono/Normal mode: 8-bit only 4KHz to 13KHz
 Mono/High Speed mode: 8-bit only 13KHz to 15KHz
Sound Blaster Pro Mono/Normal mode: 8-bit only 4KHz to 23KHz
 Mono/High Speed mode: 8-bit only 23KHz to 44.1KHz

Output (DAC):
Sound Blaster (<=1.5) Mono/Normal mode: 8-bit only 4KHz to 23KHz
Sound Blaster (2.0) Mono/Normal mode: 8-bit only 4KHz to 23KHz
 Mono/High Speed mode: 8-bit only 23KHz to 44.1KHz
Sound Blaster Pro Mono/Normal mode: 8-bit only 4KHz to 23KHz
 Mono/High Speed mode: 8-bit only 23KHz to 44.1KHz

Some DSP Commands:

10h Direct mode 8-bit DAC (single byte data transfer)
14h DMA mode 8-bit DAC
20h Direct mode 8-bit ADC (single byte data transfer)
24h DMA mode 8-bit ADC
40h Set Time Constant
48h Set Block Size
91h High Speed DMA mode 8-bit DAC
99h High Speed DMA mode 8-bit ADC
D1h Turn on Speaker
D3h Turn off Speaker
D0h Halt DMA in progress
D4h Continue DMA
E1h Get DSP version (read major ver then minor)

To reset the DSP:

1. Write a 01h to port 2x6h
2. Wait for 3 microseconds
3. Write a 00h to port 2x6h
4. Read port 2xAh until a 0AAh is read (see below for how to read from 2xAh)

If there is no 0AAh after about 100 reads, abort and declare that there is no
Sound Blaster present (or error)

To write to the DSP (all writes to 2xCh MUST follow this procedure)

1. Read 2xCh until bit 7 is clear
2. Write to 2xCh

To read from the DSP (all reads from 2xAh MUST follow this procedure)

1. Read 2xEh until bit 7 is set
2. Read from 2xAh

Interrupts:

 In DMA DAC and DMA ADC modes, a single interrupt will occur after the
block of data has been read/written. To clear the interrupt, read 2xEh
once (as well as clearing the PIC).

Ignoring Interrupts:

 The interrupt can be ignored if you poll the DMAC (DMA Controller).
Once the DMAC reports a count of 0FFFFh the transfer is finished, read
2xEh once and you are finished. You can also poll the DMA status register
and wait for the Terminal Count reached bit to be set (I found that the first
read after starting the transfer had the bit set, but not the second).

Note to VESA/Local Bus Video users:

 These video cards use DMA channel 1 which is the DMA channel used by
the Sound Blaster. Any video accesses will screw up the output of the
Sound Blaster.

Calculating the Time Constant:
 Normal Speed:
 Time Constant = 256 - (1,000,000 / sampling rate)
 = 256 - (1,000,000 / 8,000)
 = 131

 High Speed:
 Time Constant = (MSByte of) 65536 - (256,000,000 / sampling rate)
 = (MSByte of) 65536 - (256,000,000 / 44,100)
 = (MSByte of) 59731
 = (MSByte of) 0E953h
 = 0E9h

Direct mode DAC:

1. Write a D1h to 2xCh
2. Write a 10h to 2xCh
3. Write the 8-bit data sample to 2xCh
4. Wait for the correct timing (must do your own timing)
 Repeat steps 2-4 until end of data
5. Write a D3h to 2xCh

Normal speed DMA mode DAC:

1. Write a D1h to 2xCh
2. Setup Interrupt service routine
3. Write a 40h to 2xCh
4. Write Time Constant to 2xCh
5. Program the DMAC (DMA Controller)
6. Write 14h to 2xCh
7. Write the LSByte of Data Length - 1
8. Write the MSByte of Data Length - 1
9. Service Interrupt (may need to repeat steps 5-7 in the ISR)
10. Restore original Interrupt Service Routine
11. Write a D3h to 2xCh

Commands can be written to the DSP while waiting for the interrupt

High speed DMA mode DAC:

1. Write a D1h to 2xCh
2. Setup Interrupt service routine
3. Write a 40h to 2xCh
4. Write Time Constant to 2xCh
5. Program the DMAC (DMA Controller)
6. Write 48h to 2xCh
7. Write the LSByte of Data Length - 1
8. Write the MSByte of Data Length - 1
9. Write 91h to 2xCh
10. Service Interrupt (may need to repeat steps 5-7 in the ISR)
11. Restore original Interrupt Service Routine
12. Write a D3h to 2xCh

Commands CANNOT be written to the DSP while waiting for the interrupt
Resetting the DSP is the procedure used to halt DMA in progress

Direct mode ADC:

1. Write a 20h to 2xCh
2. Read the 8-bit data sample from 2xAh
3. Wait for the correct timing (must do your own timing)
 Repeat steps 1-3 until finished

Normal speed DMA mode ADC:

1. Setup Interrupt service routine
2. Write a 40h to 2xCh
3. Write Time Constant to 2xCh
4. Program the DMAC (DMA Controller)
5. Write 24h to 2xCh
6. Write the LSByte of Data Length - 1
7. Write the MSByte of Data Length - 1
8. Service Interrupt (may need to repeat steps 5-7 in the ISR)
9. Restore original Interrupt Service Routine

Commands can be written to the DSP while waiting for the interrupt

High speed DMA mode ADC:

1. Setup Interrupt service routine
2. Write a 40h to 2xCh
3. Write Time Constant to 2xCh
4. Program the DMAC (DMA Controller)
5. Write 48h to 2xCh
6. Write the LSByte of Data Length - 1
7. Write the MSByte of Data Length - 1
8. Write 99h to 2xCh
9. Service Interrupt (may need to repeat steps 5-7 in the ISR)
10. Restore original Interrupt Service Routine

Commands CANNOT be written to the DSP while waiting for the interrupt
Resetting the DSP is the procedure used to halt DMA in progress

The Mixer: --
The mixer can only be found on the Sound Blaster Pro.

It mixes the following audio sources:
-digitized voice
-FM synthesized music
-CD-audio
-line-in
-microphone input
-PC speaker output

It allows software to control volume on:
-digitized voice
-FM synthesized music
-CD-audio
-line-in
-microphone mixing
-overall master volume

The mixer setting can be done with 2 I/O ports, 2x4h and 2x5h.
x=2,4 for the Sound Blaster Pro

2x4h is the address port (write only), 2x5h is the data port (read/write)

The programming sequence is as follows:

1. Write the address of the mixers register to 2x4h
2. Read/Write the mixers register value from/to 2x5h

Mixer registers:

Register| D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |
--------+----+----+----+----+----+----+----+----+
00h | Data Reset |
02h | Reserved |
04h | Voice Volume L | Voice Volume R |
06h | Reserved |
08h | Reserved |
0Ah | x | x | x | x | x | MIC Mixing |
0Ch | x | x | In Filter | ADC | x |
0Eh | x | x |DNFI| x | x | x |VSTC| x |
20h | Reserved |
22h | Master Volume L | Master Volume R |
24h | Reserved |
26h | FM Volume L | FM Volume R |
28h | CD Volume L | CD Volume R |
2Ah | Reserved |
2Ch | Reserved |
2Eh | Line Volume L | Line Volume R |

x=don't care
Reserved=preserve original value

Register Descriptions:

 Reset Register (00h):
 You can write any 8-bit value to this register to reset the mixer

 Voice Volume Register (04h):
 d[7..4] voice volume left
 d[3..0] voice volume right
 The default level is 9.

 Microphone Mixing Register (0Ah):
 The default level is 0.

 Input Setting Register (0Ch):
 ADC - input source:
 d[2] d[1]
 0 0 Microphone (default)
 0 1 CD audio
 1 0 Microphone
 1 1 Line-in
 In Filter - filter select:
 d[5] d[4] d[3]
 0 x 0 Low Filter (default)
 0 x 1 High Filter
 1 x x No Filter

 Output Setting Register (0Eh):
 This register specifies the voice output features.
 DNFI 0 output filter is ON (default)
 1 output filter is bypassed
 VSTC 0 Mono voice mode (default)
 1 stereo voice mode

 Master Volume Register (22h):
 d[7..4] master volume left
 d[3..0] master volume right
 The default level is 9.

 FM Volume Register (26h):
 d[7..4] fm volume left
 d[3..0] fm volume right
 The default level is 9.

 CD Volume Register (28h):
 d[7..4] cd volume left
 d[3..0] cd volume right
 The default level is 0

 Line-In Volume Register (2Eh):
 d[7..4] line-in volume left
 d[3..0] line-in volume right
 The default level is 0

Rebooting:

 40:72h holds 1234h for warm boot, and 4321h (or != 1234h) for cold boot
 jmp to F000:FFF0h

Speaker:
 Port 61h read (ISA, EISA)
 Bit [7] = Parity check (parity error)
 Bit [6] = Channel check (ISA parity error)
 Bit [5] = Timer 2 output
 Bit [4] = Toggles with each refresh request
 Bit [3] = Channel check enable (enable ISA parity check)
 Bit [2] = Parity check enable (enable parity check)
 Bit [1] = Speaker data enable (Timer 2 output enable)
 Bit [0] = Speaker timer enable (Timer 2 gate enable)

 Port 61h write (ISA, EISA)
 Bit [7-4] = Reserved
 Bit [3] = Channel check enable (enable ISA parity check)
 Bit [2] = Parity check enable (enable parity check)
 Bit [1] = Speaker data enable (Timer 2 output enable)
 Bit [0] = Speaker timer enable (Timer 2 gate enable)

 Port 61h write (XT only)
 Bit [7] = 1 Clear keyboard
 Bit [6] = 0 Hold keyboard clock low
 Bit [5] = 0 I/O check enable
 Bit [4] = 0 RAM parity check enable
 Bit [3] = 0 Read low switches
 Bit [2] = Reserved
 Bit [1] = 1 Speaker data enable (Timer 2 output enable)
 Bit [0] = 1 Speaker timer enable (Timer 2 gate enable)

In Windows/DOS Developer's Journal December 1991, Robert Bybee wrote an
article entitled 'Writing For The PC Speaker'. The program SPEAKER.EXE
is a butchered version of his program.

-The physics:

 The PC can write individual levels to the speaker directly (a 1 or a 0).
It is also true that the PC can write these bits much faster than the speaker
can respond to them. At these speeds, the speaker becomes an integrator.

-1-Bit DACs:

 The latest craze in CD Players is 1-Bit dacs. What is it? Well...a
1-bit DAC really is not a DAC at all. The sample is dithered (I will use
that term from here on out, even if it is wrong) with a bit pattern whose
integral (assume NRZL square wave) matches the level of the sample. This
n-length bit pattern is sent one bit at a time into an integrator at a bit
rate of n (pattern length) times the sample rate. From the integrator to the
pre-amp to the amp, etc...

For example a 3-bit sample would require 8 discrete levels, which would
require a 7-bit dither pattern:

dither input
1111111 <-- 111
1110111 <-- 110
1101101 <-- 101
1010101 <-- 100
0101010 <-- 011
0010010 <-- 010
0001000 <-- 001
0000000 <-- 000

-Good quality PC Speaker sound:

Why not use the PC Speaker as an integrator for a 1-bit DAC? Turns out to give
pretty good quality sound. The example program does not attempt to find out
how fast your particular machine is. You must adjust the bit pattern length
until it sounds right, or figure it out the machine speed yourself. With my
486DX2-66 I was running so fast that the speaker was overwhelmed and the volume
was very low. Adding a few NOPs to the end of the ophigh[] and oplow[] strings
should slow it down some. This will give fewer bits per second which will give

better volume, but worse quality.

8254 Programmable Interval Timer (PIT)

 Counter 0: System timer, Always on, 1.193MHz, IRQ0
 Counter 1: Refresh request, Always on, 1.193MHz, Request refresh
 Counter 2: Speaker frequency, enable speaker, 1.193MHz, Speaker signal

 Port 40h Read/Write Counter 0
 Port 41h Read/Write Counter 1
 Port 42h Read/Write Counter 2
 Port 43h Write/Only Control register
 Bits [7..6] Select counter
 00 Counter 0
 01 Counter 1
 10 Counter 2
 11 Read back command

 Bits [5..4] Operation
 00 Latch counter (bits[3..1] are don't care)
 01 Read/Write LSB only
 10 Read/Write MSB only
 11 Read/Write LSB, then MSB

 Bits [3..1] Operating mode selection
 000 Mode 0: interrupt on terminal count
 001 Mode 1: hardware triggered one-shot
 x10 Mode 2: rate generator
 x11 Mode 3: square-wave generator
 100 Mode 4: software triggered strobe
 101 Mode 5: hardware triggered strobe
 xxx For latch counter operation

 Bit [0] Binary or BCD count down format
 0 Binary (16-bit) count down
 1 BCD count down (four-decades)
 x For latch counter operation
 Port 43h Write/Only Control Register (read-back command)
 Bits [7..6]
 11 Read back command

 Bits [5..4]
 0x latches the state of the CE in COL and COH
 x0 latches status of selected counters into the
 status register.

 Bits [3..0]
 1xx0 Selects counter 2
 x1x0 Selects counter 1
 xx10 Selects counter 0

 If status is latched, status is read first through counter read/write
 register.
 If count is latched, the count is read back through counter read/write
 retister, one or two reads depending on how programmed.

 Status Byte Latched
 Bit [7]
 0 OUT signal 0 (low)
 1 OUT signal 1 (high)
 Bit [6]
 0 Counter loaded from the counter input registers,
 count can be read.
 1 Write to the congtrol register or the counter, but
 the new value has not been loaded into CE.
 Bits [5..4]
 00 Reserved
 01 Read/Write LSByte
 10 Read/Write MSByte
 11 Read/Write LSByte then MSByte
 Bits [3..1]
 000 Mode 0
 001 Mode 1
 010 Mode 2
 011 Mode 3
 100 Mode 4
 101 Mode 5

 Bit [0]
 0 Binary (16-bit) count down
 1 BCD count down (four decades)

 1.19318MHz = 4.77273MHz/4. Typically Counter 0 is set for 0000h (max
 count) 54.925ms. There are 1573040 tics per day.

 This is an example code segment that shows how to speed up the timer
 resolution. I had no problem with this piece of code on a 486DX2-66,
 on slower machines you may need to slow it down.

 ---- cut ----
 .model tiny
 .code
 org 100h
 entry:
 jmp over
 old08vec dd ?
 keeptime dw 0000h
 isr08h:
 inc word ptr cs:[keeptime]
 ; at this point, you have a sped up interrupt
 ; be careful not overload the processor
 cmp cs:[_counter],0FFFFh
 jz notenabled
 notenabled:
 cmp word ptr cs:[keeptime],1000h
 jz handoff
 push ax
 mov al,20h
 out 20h,al
 pop ax
 iret
 handoff:
 mov word ptr cs:[keeptime],0000h
 jmp dword ptr cs:[old08vec]
 over:
 mov ax,3508h
 int 21h
 mov word ptr cs:[old08vec],bx
 mov word ptr cs:[old08vec+2],es
 mov ax,2508h
 mov dx,offset isr08h
 ;tiny no ds
 int 21h
 mov al,10h
 out 40h,al
 mov al,00h
 out 40h,al
 mov ah,00h
 int 16h
 xor al,al
 out 40h,al
 out 40h,al
 mov ax,2508h
 mov dx,word ptr cs:[old08vec]
 mov ds,word ptr cs:[old08vec+2]
 int 21h
 mov ax,4C00h
 int 21h

 end entry
 ---- cut ----

 The speaker timer (counter 2) can also be used for high resolution
 timing for periods less than 55ms total, using this timer avoids
 the potential harm to the system like Counter 0 or 1. One
 implementation might be:

 Enable timer 2 gate, disable timer 2 output:
 out(61h,01h)
 Set Counter 2 for interrupt on terminal count:
 out(43h,B0h)
 Set MSB to start count and halt counting:
 out(42h,FFh)
 Set LSB to start count and start counting:
 out(42h,FFh)
 Perform task to be timed (with no speaker access)
 Latch count:
 out(43h,C0h)
 Read count:
 LSByte=in(42h)

 MSByte=in(42h)

8259 Programmable Interrupt Controllers (PICs)

 Port 20h write a 20h to clear interrupts (during isr)
 can write a 60h+irq, but that is not necessary if
 the PIC is configured for modes that preserve the fully
 nested structure (which is how you will find it normally)
 Port 21h read/write, enables and disables irqs 0-7,
 0 = enabled, 1 = disabled
 Bit [7] irq 7
 Bit [6] irq 6
 Bit [5] irq 5
 Bit [4] irq 4
 Bit [3] irq 3
 Bit [2] irq 2
 Bit [1] irq 1
 Bit [0] irq 0

 Port A0h write a 20h to clear interrupts (during isr)
 can write 60h+irq-8, see above (Port 20h)
 Port A1h read/write, enables and disables irqs 8-15,
 0 = enable, 1 = disable
 Bit [7] irq 15
 Bit [6] irq 14
 Bit [5] irq 13
 Bit [4] irq 12
 Bit [3] irq 11
 Bit [2] irq 10
 Bit [1] irq 9
 Bit [0] irq 8

--
8237 DMA Controller (DMAC)

 Port 0000h DMA Channel 0, Memory address register (r/w)
 16-bit, LSByte first then MSByte
 Port 0001h DMA Channel 0, Transfer count register (r/w)
 16-bit, LSByte first then MSByte
 Port 0002h DMA Channel 1, Memory address register (r/w)
 Port 0003h DMA Channel 1, Transfer count register (r/w)
 Port 0004h DMA Channel 2, Memory address register (r/w)
 Port 0005h DMA Channel 2, Transfer count register (r/w)
 Port 0006h DMA Channel 3, Memory address register (r/w)
 Port 0007h DMA Channel 3, Transfer count register (r/w)
 Port 0008h DMA Status register (r)
 bit [7] = 1 Channel 3 request
 bit [6] = 1 Channel 2 request
 bit [5] = 1 Channel 1 request
 bit [4] = 1 Channel 0 request
 bit [3] = 1 Terminal count on channel 3
 bit [2] = 1 Terminal count on channel 2
 bit [1] = 1 Terminal count on channel 1
 bit [0] = 1 Terminal count on channel 0
 Port 000Ah DMA Channel 0-3 Mask register (r/w)
 bits [7..3] = 0 reserved
 bit [2] = 0 Clear mask bit
 1 Set mask bit
 bits [1..0] = 00 Select channel 0
 01 Select channel 1
 10 Select channel 2
 11 Select channel 3
 Port 000Bh DMA Channel 0-3 Mode register (r/w)
 bits [7..6] = 00 Demand mode
 01 Single mode
 10 Block mode
 11 Cascade mode
 bit [5] = 0 Address increment select
 bit [4] = 0 Autoinitialized
 1 Non-autoinitialized
 bits [3..2] = 00 Verify operation
 01 Write operation
 10 Read operation
 11 Reserved
 bits [1..0] = 00 Select channel 0
 01 Select channel 1
 10 Select channel 2
 11 Select channel 3
 Port 000Ch DMA Clear Byte Pointer (w)
 Port 000Dh DMA Master Clear (w)
 Port 000Eh DMA Clear Mask register (w)
 Port 000Fh DMA DMA Channel 0-3 Write Mask register (w)
 bits [7..4] = 0 reserved
 bit [3] = 0 Unmask channel 3 mask bit
 1 Set channel 3 mask bit
 0 Unmask channel 2 mask bit
 1 Set channel 2 mask bit
 0 Unmask channel 1 mask bit
 1 Set channel 1 mask bit
 0 Unmask channel 0 mask bit
 1 Set channel 0 mask bit
 Port 0019h DMA Scratch register (r/w)
 Port 0081h DMA channel 2, page table address register (r/w)
 Port 0082h DMA channel 3, page table address register (r/w)
 Port 0083h DMA channel 1, page table address register (r/w)
 Port 0087h DMA channel 0, page table address register (r/w)

 Notes:

 First off, DMA can only access the lower meg (some channels can access
 16M on ATs) which translates to a 20-bit address. Secondly, DMA cannot
 read/write across a physical page boundary (address with lower 16-bits = 0).
 This also means that DMA cannot transfer more than 64K (actually 65535
 bytes) bytes at a time. To guarantee no boundary conflicts, many
 programmers allocate 128KBytes, and find the first page boundary within
 that memory space. Here is an example in Borland 'C' to get 65000 bytes:

 ---- cut ----
 unsigned char *data;
 unsigned char *aligned;
 unsigned long aligned_physical;
 ...
 unsigned long physical;
 data=farmalloc(131000L);
 if(data==NULL)
 {
 printf("Memory Allocation Error\n");
 exit(1);
 }
 physical=((unsigned long)FP_OFF(data))+
 (((unsigned long)FP_SEG(data))<<4);
 aligned_physical=physical+0x0FFFFL;
 aligned_physical&=0xF0000L;
 aligned=MK_FP((aligned_physical>>4)&0xFFFF,0);
 ---- cut ----

 to have a device read len bytes from the above memory (*aligned) (DMA
 channel 1):

 ---- cut ----
 len--;
 outportb(0x0A,0x05);
 outportb(0x0C,0x00);
 outportb(0x0B,0x49);
 outportb(0x02,0);
 outportb(0x02,0);
 outportb(0x83,(aligned_physical>>16)&15);
 outportb(0x03,(unsigned char)(len&0xFF));
 outportb(0x03,(unsigned char)((len>>8)&0xFF));
 outportb(0x0A,0x01);
 ---- cut ----

 to have a device write len bytes from the above memory (*aligned) (DMA
 channel 1):

 ---- cut ----
 len--;
 outportb(0x0A,0x05);
 outportb(0x0C,0x00);
 outportb(0x0B,0x45);
 outportb(0x02,0);
 outportb(0x02,0);
 outportb(0x83,(aligned_physical>>16)&15);
 outportb(0x03,(unsigned char)(len&0xFF));
 outportb(0x03,(unsigned char)((len>>8)&0xFF));
 outportb(0x0A,0x01);
 ---- cut ----

Programming PC DMA Controller (8237)
Josh Cohen
CSC 390 Special Topics
H. Barada

The process, described in detail later, for programming DMA transfers is somewhat complex.

General Steps:

Set up a buffer to read from or write to.
Disable the channel you wish to set up.
Set the Page Register to the page which you want to transfer.
Clear the Byte Pointer.
Set Base Address register to the address of the beginning of the buffer.
Set the Base Word Count register to number of words you wish to transfer.
Set the DMA transfer Mode.
Enable DMA channel to start transfer.

Details:

Registers of the 8237 DMA controller
The DMA controller has several channels. Channel 1 is best for

user transfers as some others are used by the system.

Address Description
00Ah Channel mask (enable/disable)
083h Page Register
00Ch Clear Byte pointer flipflop
002h Base Address 16 bit register
003h Base Word count 16 bit register
00Bh Transfer mode register

To set up DMA controller

Set up a buffer to read from or write to.
Since the DMA controller does everything in 64k blocks, it is best to
try to align the buffer to the segment edge, I.e. Segment A offset 0.
This can be difficult depending on the language which we use.

Disable the channel you wish to set up.
If we use channel 1 we send 05h to address 00A (page register)

Set the Page Register 00A to the page which you want to transfer.
The pages are 64k blocks in main memory. We must setup multiple
transfers if we wish to transfer more than 64k since the controller is
only able to do 64k at a time.
The pages are 00h to FFh starting with 0000-FFFF. Notice that these are
the same pages that we call segments. When we specify addresses we are
only talking about the offsets from the segment, not the entire address.

Clear the Byte Pointer.
The clear byte pointer register is a flip flop. Writing to the register
clears it, the actual data which we write is ignored.
Write any value to 00Ch

Set Base Address register to the address of the beginning of the buffer.
To do this we write the offset from the segment edge of the starting
address of our buffer, this will be 0 if we have aligned the buffer to
the segment edge.
Write this offset to 002h

Set the Base Word Count register to number of words you wish to transfer.
This register gets the number of words which we wish to transfer.
Usually this will be bytes.
Write this number to 003h

Set the DMA transfer Mode.
This register controls the mode of transfer, it will vary upon the
device which we want to transfer to. In our case, using the
ThunderBoard Sound Card the possible modes are:
49h Non-continuous playback
59h Continuous playback
45h Non-continous record
55h Continuous record
By playback we mean transfer data from memory out to the card
By record we mean transfer data from the card to memory.
Notice that we are sending out or receiving data from the bus. The
computer really does not care or know where the data is going or coming
from. We must also set up the device we are transferring with. In this
case it is the ThunderBoard. See the next document on how to do that.

Enable DMA channel to start transfer.
Now that we have correctly set up the DMA controller for the transfer,
we can enble the channel. However, we must set up the card to receive
or send the data first. Usually, in practice, the card is set up before
the DMA controller.

 Programming the AdLib/Sound Blaster
 FM Music Chips
 Version 2.0 (24 Feb 1992)

 Copyright (c) 1991, 1992 by Jeffrey S. Lee

 jlee@smylex.uucp

 Warranty and Copyright Policy

 This document is provided on an "as-is" basis, and its author makes
 no warranty or representation, express or implied, with respect to
 its quality performance or fitness for a particular purpose. In no
 event will the author of this document be liable for direct, indirect,
 special, incidental, or consequential damages arising out of the use
 or inability to use the information contained within. Use of this
 document is at your own risk.

 This file may be used and copied freely so long as the applicable
 copyright notices are retained, and no modifications are made to the
 text of the document. No money shall be charged for its distribution
 beyond reasonable shipping, handling and duplication costs, nor shall
 proprietary changes be made to this document so that it cannot be
 distributed freely. This document may not be included in published
 material or commercial packages without the written consent of its
 author.

 Overview

 Two of the most popular sound cards for the IBM-PC, the AdLib and the
 Sound Blaster, suffer from a real dearth of clear documentation for
 programmers. AdLib Inc. and Creative Labs, Inc. both sell developers'
 kits for their sound cards, but these are expensive, and (in the case
 of the Sound Blaster developers' kit) can be extremely cryptic.

 This document is intended to provide programmers with a FREE source
 of information about the programming of these sound cards.

 The information contained in this document is a combination of
 information found in the Sound Blaster Software Developer's Kit, and
 that learned by painful experience. Some of the information may not
 be valid for AdLib cards; if this is so, I apologize in advance.

 Please note that numbers will be given in hexadecimal, unless otherwise
 indicated. If a number is written out longhand (sixteen instead of 16)
 it is in decimal.

| Changes from Version 1 of the file will be indicated by the use of change
| bars in the left-hand margin.

 Chapter One - Sound Card I/O

 The sound card is programmed by sending data to its internal registers
 via its two I/O ports:

 0388 (hex) - Address/Status port (R/W)
 0389 (hex) - Data port (W/O)

| The Sound Blaster Pro is capable of stereo FM music, which is accessed
| in exactly the same manner. Ports 0220 and 0221 (hex) are the address/
| data ports for the left speaker, and ports 0222 and 0223 (hex) are the
| ports for the right speaker. Ports 0388 and 0389 (hex) will cause both
| speakers to output sound.

 The sound card possesses an array of two hundred forty-four registers;
 to write to a particular register, send the register number (01-F5) to
 the address port, and the desired value to the data port.

 After writing to the register port, you must wait twelve cycles before
 sending the data; after writing the data, eighty-four cycles must elapse
 before any other sound card operation may be performed.

| The AdLib manual gives the wait times in microseconds: three point three
| (3.3) microseconds for the address, and twenty-three (23) microseconds
| for the data.
|
| The most accurate method of producing the delay is to read the register
| port six times after writing to the register port, and read the register
| port thirty-five times after writing to the data port.

 The sound card registers are write-only.

 The address port also functions as a sound card status byte. To
 retrieve the sound card's status, simply read port 388. The status
 byte has the following structure:

 7 6 5 4 3 2 1 0
 +------+------+------+------+------+------+------+------+
 | both | tmr | tmr | unused |
 | tmrs | 1 | 2 | |
 +------+------+------+------+------+------+------+------+

 Bit 7 - set if either timer has expired.
 6 - set if timer 1 has expired.
 5 - set if timer 2 has expired.

 Chapter Two - The Registers

The following table shows the function of each register in the sound
card. Registers will be explained in detail after the table. Registers
not listed are unused.

 Address Function
 ------- --
 01 Test LSI / Enable waveform control
 02 Timer 1 data
 03 Timer 2 data
 04 Timer control flags
 08 Speech synthesis mode / Keyboard split note select
 20..35 Amp Mod / Vibrato / EG type / Key Scaling / Multiple
 40..55 Key scaling level / Operator output level
 60..75 Attack Rate / Decay Rate
 80..95 Sustain Level / Release Rate
 A0..A8 Frequency (low 8 bits)
 B0..B8 Key On / Octave / Frequency (high 2 bits)
 BD AM depth / Vibrato depth / Rhythm control
 C0..C8 Feedback strength / Connection type
 E0..F5 Wave Select

The groupings of twenty-two registers (20-35, 40-55, etc.) have an odd
order due to the use of two operators for each FM voice. The following
table shows the offsets within each group of registers for each operator.

 Channel 1 2 3 4 5 6 7 8 9
 Operator 1 00 01 02 08 09 0A 10 11 12
 Operator 2 03 04 05 0B 0C 0D 13 14 15

Thus, the addresses of the attack/decay bytes for channel 3 are 62 for
the first operator, and 65 for the second. (The address of the second
operator is always the address of the first operator plus three).

To further illustrate the relationship, the addresses needed to control
channel 5 are:

 29 - Operator 1 AM/VIB/EG/KSR/Multiplier
 2C - Operator 2 AM/VIB/EG/KSR/Multiplier
 49 - Operator 1 KSL/Output Level
 4C - Operator 2 KSL/Output Level
 69 - Operator 1 Attack/Decay
 6C - Operator 2 Attack/Decay
 89 - Operator 1 Sustain/Release
 8C - Operator 2 Sustain/Release
 A4 - Frequency (low 8 bits)
 B4 - Key On/Octave/Frequency (high 2 bits)
 C4 - Feedback/Connection Type

 E9 - Operator 1 Waveform
 EC - Operator 2 Waveform

 Explanations of Registers

Byte 01 - This byte is normally used to test the LSI device. All bits
 should normally be zero. Bit 5, if enabled, allows the FM
 chips to control the waveform of each operator.

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | unused | WS | unused |
 +-----+-----+-----+-----+-----+-----+-----+-----+

Byte 02 - Timer 1 Data. If Timer 1 is enabled, the value in this
 register will be incremented until it overflows. Upon
 overflow, the sound card will signal a TIMER interrupt
 (INT 08) and set bits 7 and 6 in its status byte. The
 value for this timer is incremented every eighty (80)
 microseconds.

Byte 03 - Timer 2 Data. If Timer 2 is enabled, the value in this
 register will be incremented until it overflows. Upon
 overflow, the sound card will signal a TIMER interrupt
 (INT 08) and set bits 7 and 5 in its status byte. The
 value for this timer is incremented every three hundred
 twenty (320) microseconds.

Byte 04 - Timer Control Byte

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | IRQ | T1 | T2 | unused | T2 | T1 |
 | RST | MSK | MSK | | CTL | CTL |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bit 7 - Resets the flags for timers 1 & 2. If set,
 all other bits are ignored.
 bit 6 - Masks Timer 1. If set, bit 0 is ignored.
 bit 5 - Masks Timer 2. If set, bit 1 is ignored.
 bit 1 - When clear, Timer 2 does not operate.
 When set, the value from byte 03 is loaded into
 Timer 2, and incrementation begins.
 bit 0 - When clear, Timer 1 does not operate.
 When set, the value from byte 02 is loaded into
 Timer 1, and incrementation begins.

Byte 08 - CSM Mode / Keyboard Split.

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | CSM | Key | unused |
 | sel | Spl | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bit 7 - When set, selects composite sine-wave speech synthesis
 mode (all KEY-ON bits must be clear). When clear,
 selects FM music mode.

 bit 6 - Selects the keyboard split point (in conjunction with
 the F-Number data). The documentation in the Sound
 Blaster manual is utterly incomprehensible on this;
 I can't reproduce it without violating their copyright.

Bytes 20-35 - Amplitude Modulation / Vibrato / Envelope Generator Type /
 Keyboard Scaling Rate / Modulator Frequency Multiple

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Amp | Vib | EG | KSR | Modulator Frequency |
 | Mod | | Typ | | Multiple |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bit 7 - Apply amplitude modulation when set; AM depth is
 controlled by the AM-Depth flag in address BD.
 bit 6 - Apply vibrato when set; vibrato depth is controlled
 by the Vib-Depth flag in address BD.
 bit 5 - When set, the sustain level of the voice is maintained
 until released; when clear, the sound begins to decay
 immediately after hitting the SUSTAIN phase.
 bit 4 - Keyboard scaling rate. This is another incomprehensible
 bit in the Sound Blaster manual. From experience, if
 this bit is set, the sound's envelope is foreshortened as
 it rises in pitch.
 bits 3-0 - These bits indicate which harmonic the operator will
 produce sound (or modulation) in relation to the voice's
 specified frequency:

 0 - one octave below
 1 - at the voice's specified frequency
 2 - one octave above
 3 - an octave and a fifth above
 4 - two octaves above
 5 - two octaves and a major third above
 6 - two octaves and a fifth above
 7 - two octaves and a minor seventh above
 8 - three octaves above
 9 - three octaves and a major second above
 A - three octaves and a major third above
 B - " " " " " " "
 C - three octaves and a fifth above
 D - " " " " " "
 E - three octaves and a major seventh above
 F - " " " " " " "

Bytes 40-55 - Level Key Scaling / Total Level

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Scaling | Total Level |
 | Level | 24 12 6 3 1.5 .75 | <-- dB
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bits 7-6 - causes output levels to decrease as the frequency
 rises:

 00 - no change
 10 - 1.5 dB/8ve
 01 - 3 dB/8ve
 11 - 6 dB/8ve

 bits 5-0 - controls the total output level of the operator.
 all bits CLEAR is loudest; all bits SET is the
 softest. Don't ask me why.

Bytes 60-75 - Attack Rate / Decay Rate

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Attack | Decay |
 | Rate | Rate |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bits 7-4 - Attack rate. 0 is the slowest, F is the fastest.
 bits 3-0 - Decay rate. 0 is the slowest, F is the fastest.

Bytes 80-95 - Sustain Level / Release Rate

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Sustain Level | Release |
 | 24 12 6 3 | Rate |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bits 7-4 - Sustain Level. 0 is the loudest, F is the softest.
 bits 3-0 - Release Rate. 0 is the slowest, F is the fastest.

Bytes A0-B8 - Octave / F-Number / Key-On

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | F-Number (least significant byte) | (A0-A8)
 | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | Unused | Key | Octave | F-Number | (B0-B8)
 | | On | | most sig. |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bit 5 - Channel is voiced when set, silent when clear.
 bits 4-2 - Octave (0-7). 0 is lowest, 7 is highest.
 bits 1-0 - Most significant bits of F-number.

 In octave 4, the F-number values for the chromatic scale and their
 corresponding frequencies would be:

 F Number Frequency Note
 16B 277.2 C#
 181 293.7 D
 198 311.1 D#
 1B0 329.6 E
 1CA 349.2 F
 1E5 370.0 F#
 202 392.0 G
 220 415.3 G#
 241 440.0 A
 263 466.2 A#
 287 493.9 B
 2AE 523.3 C

Bytes C0-C8 - Feedback / Algorithm

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | unused | Feedback | Alg |
 | | | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bits 3-1 - Feedback strength. If all three bits are set to
 zero, no feedback is present. With values 1-7,
 operator 1 will send a portion of its output back
 into itself. 1 is the least amount of feedback,
 7 is the most.
 bit 0 - If set to 0, operator 1 modulates operator 2. In this
 case, operator 2 is the only one producing sound.
 If set to 1, both operators produce sound directly.
 Complex sounds are more easily created if the algorithm
 is set to 0.

Byte BD - Amplitude Modulation Depth / Vibrato Depth / Rhythm

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | AM | Vib | Rhy | BD | SD | TOM | Top | HH |
 | Dep | Dep | Ena | | | | Cym | |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bit 7 - Set: AM depth is 4.8dB
 Clear: AM depth is 1 dB
 bit 6 - Set: Vibrato depth is 14 cent
 Clear: Vibrato depth is 7 cent
 bit 5 - Set: Rhythm enabled (6 melodic voices)
 Clear: Rhythm disabled (9 melodic voices)
 bit 4 - Bass drum on/off
 bit 3 - Snare drum on/off
 bit 2 - Tom tom on/off
 bit 1 - Cymbal on/off
 bit 0 - Hi Hat on/off

 Note: KEY-ON registers for channels 06, 07, and 08 must be OFF
 in order to use the rhythm section. Other parameters
 such as attack/decay/sustain/release must also be set
 appropriately.

Bytes E0-F5 - Waveform Select

 7 6 5 4 3 2 1 0
 +-----+-----+-----+-----+-----+-----+-----+-----+
 | unused | Waveform |
 | | Select |
 +-----+-----+-----+-----+-----+-----+-----+-----+

 bits 1-0 - When bit 5 of address 01 is set, the output waveform
 will be distorted according to the waveform indicated
 by these two bits. I'll try to diagram them here,
 but this medium is fairly restrictive.

 ___ ___ ___ ___ _ _
 / \ / \ / \ / \ / | / |
 /____________ /__________ /_____\/_____\ /__|___/__|___
 \ /
 ___/

 00 01 10 11

| Detecting a Sound Card
|
| According to the AdLib manual, the 'official' method of checking for a
| sound card is as follows:
|
| 1) Reset both timers by writing 60h to register 4.
| 2) Enable the interrupts by writing 80h to register 4. NOTE: this
| must be a separate step from number 1.
| 3) Read the status register (port 388h). Store the result.
| 4) Write FFh to register 2 (Timer 1).
| 5) Start timer 1 by writing 21h to register 4.
| 6) Delay for at least 80 microseconds.
| 7) Read the status register (port 388h). Store the result.
| 8) Reset both timers and interrupts (see steps 1 and 2).
| 9) Test the stored results of steps 3 and 7 by ANDing them
| with E0h. The result of step 3 should be 00h, and the
| result of step 7 should be C0h. If both are correct, an
| AdLib-compatible board is installed in the computer.
|
|

| Making a Sound
|
| Many people have asked me, upon reading this document, what the proper
| register values should be to make a simple sound. Well, here they are.
|
| First, clear out all of the registers by setting all of them to zero.
| This is the quick-and-dirty method of resetting the sound card, but it
| works. Note that if you wish to use different waveforms, you must then
| turn on bit 5 of register 1. (This reset need be done only once, at the
| start of the program, and optionally when the program exits, just to
| make sure that your program doesn't leave any notes on when it exits.)
|
| Now, set the following registers to the indicated value:
|
| REGISTER VALUE DESCRIPTION
| 20 01 Set the modulator's multiple to 1
| 40 10 Set the modulator's level to about 40 dB
| 60 F0 Modulator attack: quick; decay: long
| 80 77 Modulator sustain: medium; release: medium
| A0 98 Set voice frequency's LSB (it'll be a D#)
| 23 01 Set the carrier's multiple to 1
| 43 00 Set the carrier to maximum volume (about 47 dB)
| 63 F0 Carrier attack: quick; decay: long
| 83 77 Carrier sustain: medium; release: medium
| B0 31 Turn the voice on; set the octave and freq MSB
|
| To turn the voice off, set register B0h to 11h (or, in fact, any value
| which leaves bit 5 clear). It's generally preferable, of course, to
| induce a delay before doing so.
|
|
| Acknowledgements
|
| Thanks are due to the following people:
|
| Ezra M. Dreisbach (ed10+@andrew.cmu.edu), for providing the information
| about the recommended port write delay from the AdLib manual, and the
| 'official' method of detecting an AdLib-compatible sound card.
|
| Nathan Isaac Laredo (gt7080a@prism.gatech.edu), for providing the
| port numbers for stereo sound on the Sound Blaster Pro.

